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Abstract

Modern deep learning networks rely on massive amounts of labeled data for training,

which can be prohibitively costly and time consuming to generate. The field of self-

supervised learning aims to circumvent this issue by using unsupervised pretraining to

generate lower-dimensional data representations. Cutting-edge methods utilize two

“views” or transformations of each data point to create an embedding space that

maintains the underlying structure of the data distribution. Out of these methods,

“contrastive” methods– which create positive pairs and negative pairs of each image

in a batch– reign supreme despite their dependence on hyper-parameters like batch

size. In this work, we propose a denoising autoencoder-based training architecture

as an alternative to contrastive methods. The novelty of this method comes from

utilizing a denoising autoencoder in combination with various types of embedding losses

to generate representations. We perform sensitivity analysis to obtain the optimal

weighting of the embedding loss with respect to the denoising reconstruction loss and

then compare the resulting models to contrastive methods. In linear evaluation, our

method achieves 67.3% classification accuracy, compared with 69.7% for the contrastive

SimCLR despite our method not requiring the use of negative pairs. We also highlight

setting under which our method outperforms SimCLR, generating potential use cases.

The code repository used for all experiments can be found at https://github.com/

artenyx/SSLProject.
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1 Introduction

1.1 Self-Supervised Learning

In the field of Deep Learning, labeled data is both of paramount importance and of high
cost to generate. Modern state-of-the-art models rely on millions if not billions of labeled
or annotated images for training [5][13][17]. This short supply and high demand creates a
premium on labeled data for use in deep network training.

In computer vision, image-class data sets like ImageNet are the product of monumental
crowd-sourcing operations that are not always feasible for smaller projects or niche data
sets. On the other hand, images without labels are extremely plentiful across the internet.
This discrepancy motivates the field of Self-Supervised Learning (SSL), which aims to use
unlabeled data to train a representation space and reduce the downstream dependence on
labeled data.

Self-supervised learning thus has two stages: an unsupervised representation learning through
a pretext task, and a downstream supervised fine-tuning task. The goal of the representation
learning stage is to form a representation space that captures the general structure of the
data. For example, in a quality embeddings space we would expect the distance between
the embeddings of a beagle and a golden retriever to be smaller than that of a beagle and a
motorcycle.

The general framework of the representation learning process is that two ”views” of the batch
images are created by a predefined random augmentation pipeline and then compared in some
way to train an embedding space. This embeddings space is defined by an encoder and a
projector network, and when training is complete the projector is removed and the encoder
generates representations. These representations can then be used for the downstream task.

During representation learning, we assume that we do not have access to large sets of labeled
data and thus the computational resources required for training the representation space are
not of paramount concern. For this reason, networks are often trained for upwards of 500
epochs. If this training is performed with a quality objective, the network should be able to
e�ciently encode any observation from the input distribution.

1.2 The Collapsing Problem and Contrastive Learning

One of the central problems in Self-Supervised Learning is the collapsing problem. [10]
Simply put, complete collapse occurs when the network objective only incentivizes similarity
between the two image views, and the network quickly learns to map all input to the same
embedding vector. This mapping maximizes the similarity-based objective function while
producing an uninformed network which has ”tricked” our objective. Partial collapse, when
some dimensions of the embeddings space are not utilized, can also occur because of a weak
training objective.
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State-of-the-art methods utilize contrastive learning to create representations. [5][10][13]
Contrastive learning uses intra-batch relationships to train the network and avoid collapse.
These schemes compare the embeddings of ”positives”, image views which stem from the
same original image, and ”negatives”, image views which stem from di↵erent images. [4] The
positives and negatives are treated di↵erently in the loss function with the ultimate goal of
embedding positives near and negatives far in the embedding space.

It follows that as the batch size increases, the number of negative pair relationships increases
quadratically. For this reason contrastive frameworks run optimally at very high batch sizes,
which can be unfavorable in some settings. [4][6]

An illustrative example of this phenomenon is SimCLR, which uses its novel Information
Noise Contrastive Estimation (InfoNCE) loss to push negative pairs far and positive pairs
close in the embedding space. [1][4] This framework was groundbreaking and laid the foun-
dation for state-of-the-art methods like OpenAI’s CLIP and Google’s CoCa, which currently
dominates the ImageNet benchmark. [13][17] SimCLR uses encoder and projector networks
to produce representations of the two views of an image. These representations are then
fed to the InfoNCE loss. Because this loss function relies on the negative pairs in its loss
function, it operates best at high batch sizes (4096 in the original paper). [4]

This coupling of performance to batch size in contrastive methods has generated interest in
alternatives to contrastive methods that do not directly rely on the negative pairs. SimSiam
for example, utilizes two separate branches with a projection layer only on one branch,
followed by a similarity loss between the projected view and the non-projected view. [6]
Boostrap your own latent or BYOL uses an online and a less frequently updated target
network to bootstrap latent code which is used in downstream tasks. [7][9]

In this work, we present another approach to self-supervised learning which avoids collapse
without relying on the comparison of negative pairs. This framework combines a ”positive-
only” embedding loss with a decoder and a denoising reconstruction loss to disincentivize
the network from producing a trivial embedding space.

1.3 Autoencoders

Autoencoders are comprised of an encoder network which generally maps the input to a lower
dimensional latent code, followed by a decoder which attempts to reconstruct the original
image given the output of the encoder. Because the size of the latent code is so small,
the autoencoder must compress the input in a way that naturally can be used as a data
representation.

The denoising autoencoder is structurally similar to its non-denoising counterpart, though it
is tasked with ”unlearning” an augmentation that was applied to its input. In other words,
if a random augmentation pipeline is applied to an image, a perfect denoising autoencoder
will return the original image before it was augmented.
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The framework presented in this paper can be thought of as a denoising autoencoder with
an added embedding loss to promote the creation of a quality representation space. By
forcing the network to unlearn the augmentation pipeline, it must also learn the underlying
structure of the data distribution. We show that this method performs better than its non-
denoising counterpart, and then compare it to the SimCLR framework performed with the
same encoder and projector networks. Notably, the proposed method does not use negative
pairs, intense covariance computations as in Barlow Twins, or any clustering or bootstrapping
in order to generate representations. [9][18]
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2 Method

f✓ g�

x1 x̂1z1

Lreconstruction

encoder + projector decoder

x LembeddingAugmentations Reconstructions

f✓ g�

x2 x̂2z2

Lreconstruction

encoder + projector decoder

Figure 1: Denoising autoencoder self-supervised learning architecture. Two views are gen-
erated from an image and then embedded and reconstructed via the network. The distance
between the two embeddings forms the embedding loss, and the distance between each re-
construction and the original unaugmented image forms the reconstruction loss.

The autoencoder is an intuitive choice for representation learning by the nature of its
architecture. By forcing the network to reconstruct an image after it is compressed into a
low dimensional space, the embedding must capture the salient features in order to produce
any type of reconstruction of the data, whether denoised or otherwise. We should then be
left with a quality representation space to be used in downstream tasks.

In practice this is not the case. With no constraints or penalties on the latent code, the
autoencoder does not inherently organize the embedding space e�ciently. This leads to
weak downstream representations and poor performance.

One way to mitigate this problem is to take a classical self-supervised learning approach. To
do this, we generate views of the input image and pass them through the autoencoder, while
retaining the embeddings and reconstructions in order to back-propagate our loss signal. By
incorporating a reconstruction loss, we avoid the collapsing problem while also including an
embedding loss to ensure that we obtain quality downstream representations. This idea was
previously explored with a non-denoising autoencoder and an L2 embedding loss. [3]
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Figure 2: Pareto front diagram illustrating optimization priority in relation to hyper-
parameter ↵.

In this setting, the original image x is passed into some augmentation distribution to obtain
two views x1, x2 ⇠ D(x). These views are passed through the encoder and projector to gener-
ate embeddings z1 = f✓(x1), z2 = f✓(x2), then through the decoder to obtain reconstructions
x̂1 = g�(z1), x̂2 = g�(z2). Here, the size of the latent code is represented by |z| = d. We can
then parameterize the loss function as follows:

L = Lreconstruction(x1, x2, x̂1, x̂2) +
↵

d
· Lembed(z1, z2) (1)

L = ||x1 � x̂1||2 + ||x2 � x̂2||2 +
↵

d
· ||z1 � z2||2 (2)

Since our element-wise L2 embedding loss only requires comparison between views which
stem from the same image, we call this a ”positive-only” loss function. While this loss
function does not use negative pair computations, we generalize the formulation to allow the
testing of various types of embedding losses in combination with a reconstruction loss.

L = ||x1 � x̂1||2 + ||x2 � x̂2||2 +
↵

d
· Lembed(z1, z2) (3)

The hyper-parameter ↵ controls the balance between prioritization of the two portions of the
loss function during training. Thus, at very high ↵ values, we expect lousy reconstructions
and potential collapse of the embedding space for the previously explained reasons. For very
low ↵ values, we expect strong reconstructions yet a weak learned representation space. If
the given embedding and reconstruction loss-type combinations are compatible, we would
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expect some value of ↵ where there is higher downstream performance compared to when ↵
approaches 0 and 1.

An issue with this framework arises when a comparison is made between the e↵ects of the
two portions of the loss function on the encoder. As with other SSL methods, the embedding
loss in Equation 3 incentivizes the encoder to embed the two views similarly or identically,
but the reconstruction loss incentivizes the encoder to embed the two views di↵erently, so
that they can be reconstructed as their separate original views. Thus, the two portions of
the loss function are not aligned and are competing during optimization.

This disconnect between the functions of the embedding and reconstruction losses inspire
the framework presented in this paper. Rather than tasking the network with reconstructing
the image views, we employ a denoising reconstruction loss which tasks the network with
reconstructing the original unaugmented image. Under this formulation, the embedding loss
and reconstruction loss are more aligned, as the reconstruction loss is also incentivizing the
encoder to embed the views similarly, as both views will be reconstructed as the original
unaugmented image. Thus, this framework prevents collapse by the inclusion of a decoder
while aligning its reconstruction loss to the objective of representation learning. An overview
of our method can be found in Figure 1.

While the typical autoencoder reconstruction loss is an element-wise L2 loss, this framework
does not yet specify the type of embedding loss to use in combination with the reconstruction
loss. By leaving this choice open, we can experiment with various positive-only embedding
losses and test the performance of networks trained with these losses. Using a similar pa-
rameterization as above, we have the following loss function for this new architecture:

L = ||x� x̂1||2 + ||x� x̂2||2 +
↵

d
· Lembed(z1, z2) (4)

Because all terms of the loss function are positive-only, this method is theoretically indepen-
dent of batch size and maintain a simple loss calculation. While an element-wise loss may
be simplest, we will also experiment with using similarity losses which compare the entire
embedding vector of the positive pair.

Thus, as our network learns to reconstruct the un-augmented image and embed the views
close together, it is learning a strong representations space which can be used for downstream
tasks. As expected, this framework performs definitively better than its non-denoising coun-
terpart in a linear evaluation classification task. Our method also achieves comparable
results to SimCLR run on the same encoding networks while relying on simple losses and
not requiring the inclusion of negative pairs.
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3 Experiments

3.1 Network Architecture

Figure 3: Overview of encoder (top) and decoder (bottom) networks as well a sizes of image
tensors throughout layers (for a single image). All convolutions and pooling layers have 2
dimensional kernels.
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As the goal of our experiments is to explore the viability of this new method by comparing
performance to SOA, simple neural networks are used for the encoder, projector, and decoder.

The encoder network is comprised of 5 2D convolutional layers, each followed by either a
hard hyperbolic tangent (Hardtanh) activation or a 2D max pooling as presented in [12].
The output of the encoder is called the representation and it is then flattened and input to
the projector, which is a simple dense layer connecting the 8192-dimensional encoder output
to the latent code size of 64. The output of the projector layer is called the embedding and
it is used in the embedding loss calculation.

The decoder is much simpler than the encoder as it consists of a dense layer, which ex-
pands the dimension of the embedding (64) back to the size of the representation (8192),
followed by an unflatten operation and three strided deconvolution layers with either Hard-
tanh or Sigmoid activation functions. There are about 2 million total trainable parameters
in this network. Note that the decoder is only used when the network being trained is an
autoencoder.

A summary of the layer-wise outputs of the network can be found in Figure 3 and full network
details can be found in Table 3.

3.2 Training Routine

3.2.1 Augmentation Pipeline

Transform Type Parameter Type Value

Default
Pipeline

Random Crop Window Size 28 x 28

Resize Window Size 32 x 32

Random Horizontal Flip Probability 0.8

Random Color Jitter

Brightness 0.2

Contrast 0.2

Saturation 0.2

Hue 0.05

Other
Transforms

Gaussian Blur Kernel 3

Random Solarize
Threshold 0.75

Probability 0.2

Table 1: Details of augmentation pipeline. Default pipeline is used for all experiments unless
otherwise specified. Other transforms are used in some experiments at the given parameters.

Before any experiments were run, an augmentation pipeline was applied to each of the
images in the representation learning data set (CIFAR-100). [11] During every epoch of
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unsupervised training, two views of the image were drawn from the augmentation pipeline
to be used for either autoencoder or SimCLR training.

Following the procedure laid out by [4], the PIL images were first converted to [0,1] tensors
before they were passed to augmentations. [15] Then, a random 28-pixel square crop was
taken of the image and the remaining image was resized back to a 32-pixel square. Then,
the images were subject to a potential random horizontal flip and random color jitter which
altered the brightness, contrast, hue and saturation of each image.

In some experiments, Gaussian Blur and Random Solarize were also included in the aug-
mentation pipeline, though not by default. The full details of the pipelines can be seen in
Table 1.

3.2.2 Representation Learning

Algorithm 1 PyTorch-style pseudo-code for unsupervised representation training of a
siamese autoencoder network with an L2 embedding loss.
model = nn.Sequential(⇤[encoder, projector, decoder])
optimizer = torch.optim.Adam(model.parameters(), lr = 0.0001)
crit rec = nn.MSELoss() . Set reconstruction criterion.
crit emb = nn.MSELoss() . Set embedding criterion.
for i in range(epochs usl) do

for x in usl loader do . Draw CIFAR100 images.
x1, x2 = D(x) . Draw views from augmentation distribution
e1, e2 = encoder(x1), encoder(x1)
z1, z2 = projector(e1), projector(e1)
r1, r2 = decoder(z1), decoder(z1)
optimizer.zero grad()
loss = crit rec(r1, x) + crit rec(r2, x) + ↵ · crit emb(z1, z2)/d
loss.backwards()
optimizer.step()

end for

end for

To test this novel framework, all experiments begin with unsupervised pretraining of the
given network. In this portion of the experiment, two views of the image-batch were extracted
from the random augmentation pipeline shown in Table 1 and then fed through the network.
The 256-dimensional view embeddings were retained for use in the loss function and passed
through the decoder network to be reconstructed. The embeddings and reconstructions were
then utilized to calculate a loss value which was used to update the network.

Unless otherwise noted, the default setting was to conduct representation training for 300
epochs on CIFAR-100. The input were of size [b⇥3⇥32⇥32], where b is the batch size that
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is being used. Algorithm 1 demonstrates the process for running representation learning
with the denoising autoencoder configuration.

During this portion, the Adam optimizer was used with a cosine learning rate decay schedule
and an initial learning rate of 0.0001. [14] The default batch size was 512 and the size of
representations and embeddings were 8192 and 64 dimensions, accordingly.

3.3 Evaluation Routine

3.3.1 Linear Evaluation

Algorithm 2 PyTorch-style pseudo-code for linear evaluation of learned representations.
model = nn.Sequential(⇤[encoder, nn.Linear(representation dim, n classes])
optimizer = torch.optim.Adam(model.parameters(), lr = 0.001)
crit le = nn.CrossEntropyLoss() . Set linear evaluation criterion.
for i in range(epochs le) do

for x, y in le loader do . Draw CIFAR10 images and class labels.
p = model(x)
optimizer.zero grad()
loss = crit le(p, y)
loss.backwards()
optimizer.step()

end for

end for

For this portion of the Self-Supervised learning experiments, the projector and decoder
networks were removed and the weights of the encoder network was frozen. Then, a new
data loader was created using the linear evaluation dataset, which was CIFAR-10 in this case.
This loader was created by passing the CIFAR-10 images through the encoder to generate
representations and then pairing them to their respective labels.

Once the loaders were created, a one dimensional dense layer which took inputs of 8192
and generated outputs of 10 dimensions was randomly initialized. This miniature network
was then trained on the representations to obtain the linear evaluation classification rate.
Algorithm 2 provides an overview of this portion of training.

During hyper-parameter tuning (↵ and learning rates), a CIFAR-10 validation set was used
to test performance of the networks, while during assessment time, a held-out test set was
used. Linear evaluation was run by default for 200 epochs and the batch size was kept at
512. The Adam optimizer was used for this portion with a learning rate of 0.001 and no
learning rate scheduler.
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3.3.2 K-Means Clustering

Another newer way of evaluating the quality of the embedding space is by conducting some
sort of clustering on the learned representations and measuring the distance between the
points and their respective centroids.

This process was completed with the k-Means clustering package of Sci-Kit Learn with an
L2 metric and 10 cluster centers for the 10 respective classes in the data set. The evaluation
criterion used was the intertia of the clustering, or the average L2 distance between the
representations and their cluster centers.

All experiments were conducted in PyTorch on a Linux Ubuntu machine and accelerated
using 4 NVIDIA RTX A6000 GPUs. The complete code repository for the experiment can
be found at https://github.com/artenyx/SSLProject.

4 Discussion

4.1 Denoising vs. Conventional Autoencoder

Some previous work has been done to study the e↵ect of using a conventional autoencoder
with an embedding loss and comparing against state of the art methods. [3] This work
compared the performance of a non-denoising autoencoder base with a positive-only L2
embedding loss to SimCLR and did not achieve competitive performance to SimCLR. The
main novelty of this method lies in utilizing a denoising reconstruction loss to increase
network performance.

One way to interpret the denoising objective is that the network is incentivized to abstract
the salient features of the non-augmented data distribution in order to reverse the random
augmentation applied to the image. The model then learns to reconstruct the original unagu-
mented image from the embeddings of the two augmented views. As previously discussed,
this aligns the two portions of the loss function and thus allows the learning of a higher
quality representation space.

Figure 4 shows the linear evaluation trajectory for representations trained by a traditional
autoencoder compared with a denoising autoencoder. Not only does the denoising repre-
sentation create faster convergence in linear evaluation, it also achieves about a 5% higher
classification rate.

As the reconstruction loss is the only aspect of the training routine that is varied in this
experiment, it is clear that the denoising task produced stronger representations than its
non-denoising counterpart. This then confirms the idea that a denoising reconstruction loss
is more aligned with the SSL objective.

One interesting artifact of using decoders in the context of SSL, is that we can observe
and draw insights from the reconstructions during training. Figure 5 shows one example
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Figure 4: Linear evaluation trajectories for representations trained with a denoising vs a non-
denoising autoencoder with no embedding losses. The autoencoder representation achieves
a 61.2% classification rate while the denoising autoencoder representation achieves a 65.9%
classification rate on CIFAR-10.

of a set of unaugmented input images and a corresponding set of views, non-denoising re-
constructions, and denoising reconstructions. As expected, the non-denoising autoencoder
produces reconstructions that are much more faithful to the input views while the denoising
reconstructions are more hazy and di�cult to discern.

As shown in Figure 4, however, we obtain higher quality representations from the non-
denoising framework. It follows that faithful reconstructions do not directly create stronger
representations and thus utilizing a reconstruction loss like L2 may be overly restrictive for
this setting. However, we leave this work to be explored in another setting.

The denoising reconstructions seem to show a hazy ”average” of the augmentation distri-
bution. Most likely as a product of the random cropping augmentation, most of the recon-
structions are much more centered than their corresponding views, illustrating the network’s
unlearning of this transformation. For some images, like the lawnmower towards the bottom
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Figure 5: CIFAR-100 test-set images with reconstructions from denoising and non-denoising
autoencoders. Networks trained for 300 epochs on CIFAR-100.

left of the image, the denoising autoencoder predicts somewhat of a superposition of the
image if it were horizontally flipped, which indicates the network’s modeling of the horizon-
tal flip augmentation of the pipeline. We might then expect that the denoising autoencoder
would be more transformation invariant than other methods, though we explore this question
in further experiments.

4.2 Embedding Loss

As previously mentioned, this framework does not inherently define an embedding loss type
to be used during training. Thus, three choices were experimented with in this work: element-
wise L1 and L2 losses, and a negative cosine similarity (NCS) loss between positive pairs.
While the element-wise losses may be unnecessarily strict in incentivizing the creation of
identical embeddings for the two views, the NCS loss allows for more flexible embeddings as
they do not have to be identical to maximize similarity. These three choices result in the
following three equations for the embedding portion of the loss function:
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Figure 6: A comparison of classification rates on a validation set using a denoising autoen-
coder architecture (left) and a non-denoising autoencoder architecture (right) with various
embedding losses.

Lembed(z1, z2) = ||z1 � z2||1 L1 Loss (5)

Lembed(z1, z2) = ||z1 � z2||2 L2 Loss (6)

Lembed(z1, z2) =
z1 · z2

||z1||2 · ||z2||2
NCS Loss (7)

For each type of embedding loss, a CIFAR-10 validation set was used to perform a sensitivity
analysis and identify the optimal weighted combination of the reconstruction and embedding
losses to be used in training. Values of ↵ between 10�4 and 100 (unless larger values were
necessary) were tested separately for each loss, as the loss types generally vary by scale on
orders of magnitude. The linear evaluation classification rates on this validation set are
reported and used to determine which ↵ settings were optimal.

By our parameterization, high ↵ values correspond to high weight placed on the embedding
loss in comparison to the reconstruction loss, and vice versa. It follows that when ↵ =
0, the architecture is simply a denoising autoencoder scheme and the representations and
reconstructions should have no e↵ect on each other.

In Figure 6, we can see the performance of the networks under various loss types / ↵-values
for a denoising scheme (left) and a non-denoising scheme (right). Here the dotted lines
represent baseline performance when ↵ = 0.

The first takeaway from Figure 6 is how the non-denoising autoencoder does not seem to
benefit much from the inclusion of an embedding loss across the tested types. This is further
evidence for the idea that the non-denoising reconstruction loss is not aligned with the SSL
objective of embedding the two views near each other in the embedding space.
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Figure 7: Inertia values (average L2-distance between point and cluster-center) for represen-
tations of CIFAR-10 images obtained by training siamese denoising autoencoders at various
embedding-loss strengths.

In the denoising case, there is a more clear optimal balance between the embedding and
reconstruction losses, indicating more clear alignment between the loss portions at di↵erent
weightings. At low ↵ values, we see that the performance is similar to when ↵ = 0 and
as ↵ grows, we see first an increase and then a sharp decline in performance. This decline
can be explained with the pareto diagram included in Figure 2; as ↵ becomes too large, the
embedding space comes closer to a collapsing regime.

Thus, the performance curves on the left of Figure 6 show the embedding and reconstruction
losses performing similar functions and achieving optimal performance for di↵erent ↵ values
for each embedding loss type. By a small margin, the NCS embedding loss performs the
best in the denoising experiments.

To better understand the function of increasing ↵, k-means clustering with 10 centers was
conducted on the CIFAR-10 test set representations. These results are shown in Figure 7.
As expected, the L1 and L2 plots show an inverse relationship between log10(↵) and the
inertia. This makes sense since as these element-wise penalties increase, the embeddings are
forced to take on smaller values and the representations are more likely to be closer to their
cluster centers.
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Method Embedding Loss Alpha Value Top-1 Accuracy

SimCLR None – 69.7

Non-denoising
AE

None 0 61.2

L1 0.01 62.0

L2 0.0001 62.1

Negative Cosine Similarity 0.001 62.6

Denoising AE

None 0 65.9

L1 0.1 67.1

L2 1 67.1

Negative Cosine Similarity 10 67.3

Table 2: Linear Evaluation Classification performance on CIFAR-10 for various embedding
losses and SOA SimCLR.

Interestingly, the NCS loss, while having the highest performance, does not behave in the
same way. There is not a rapid shrinking of inertia values as the value of ↵ increases but
rather an initial increase in inertia before an eventual decline. This most likely is due to the
fact that NCS is not an element-wise loss, and thus does not constrain the magnitude of the
elements of the embedding vectors. Further work could be done to explore why the NCS
loss embeddings behave di↵erently and what its relationship is to performance.

4.3 Comparison with Contrastive Methods

4.3.1 Linear Evaluation Performance

As mentioned previously, a linear evaluation procedure was used to determine the strength
of the learned representation space. After the linear evaluation network was trained for
200 epochs, the CIFAR-10 test set was used to assess the final performance of the di↵erent
methods.

The out of the denoising autoencoder methods, the best performing networks (along with
their ↵ = 0 counterparts) were chosen to be measured against SimCLR to assess performance.
The results of these experiments are summarized in Table 2.

As shown in Table 2, in final classification rates the denoising architecture still handily
outperforms the non-denoising one, with the NCS embedding loss achieving the highest
performance among both schemes. While this denoising scheme does not ultimately out-
perform SimCLR (67.3% top-1 accuracy compared to 69.7%), it is competitive with this
contrastive framework despite the lack of negative pair computations. This demonstrates
that our framework can be feasibly utilized for SSL.
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While the denoising autoencoder method does not outperform SimCLR on under the base
conditions, there are some settings where our method performs better than SimCLR. The
experiments which illustrate two of these settings are included below.

4.3.2 E↵ects of Augmentation Strength

Figure 8: 8 x 8 CIFAR-100 images with varying levels of color jitter strength.

The augmentation pipeline is critical to the performance of SSL. Various works have
shown the importance of the augmentation pipeline in learning strong representations from
self-supervised learning. [2][4][15][16][18] The random color jitter is among the most common
augmentations used in these experiments, and thus it was chosen for its own set of experi-
ments to dig deeper into the relationship between augmentation strength and the quality of
the representation space learned through these frameworks.

In this experiment, the augmentation strength or s is representative of the max value that
each color property of the image can be jittered as shown below:

Brightness: 0.8 · s
Contrast: 0.8 · s
Saturation: 0.8 · s

Hue: 0.2 · s

Thus, if we have a higher augmentation strength, the image properties will be more likely
to be intensely modified by the augmentation pipeline. Figure 8 shows output images of the
augmentation pipeline with various values of s.

Augmentation strength values to test were chosen uniformly between 0 and 1.5, with 7 total
strength settings tested. For each strength value, an entire SSL experiment was run and the
CIFAR-10 classification rate was produced. The results of this experiment can be seen in
Figure 9, which measures the change in classification rate from the baseline (no color jitter)
to the strength that was tested in that experiment.
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DAE-L2 DAE-NCS SimCLR
Top-1 acc. @ s = 1.5 66.8% 64.8% 63.2%

Figure 9: Percentage changes of classification rates when augmentation pipeline’s color jitter
strength is increased. Below the plot, top-1 accuracies in linear evaluation are shown for the
three methods at the highest strength value. Data shown for NCS Denoising Autoencoder
(AE-NCS), L2 Denoising Autoencoder (AE-L2), and SimCLR.

As we can see, each method benefits from some level of color jitter, though at high strength
levels the methods diverge. The SimCLR method seems to break down at high levels of
augmentation strength, losing around 7% performance from the baseline, and over 10%
compared to peak performance. The autoencoders on the other hand do not collapse nearly as
badly, and actually seem to retain their strong performance at high augmentation strengths.
In fact, the L2 embedding denoising autoencoder barely su↵ers any performance compared
to its peak, and still performs better at than baseline at high augmentation strength levels.

As shown at the bottom of Figure 9, both denoising autoencoder methods outperform Sim-
CLR at the highest strength level of s = 1.5. This indicates that the representations obtained
from the autoencoder methods may be more invariant to augmentations used in the aug-
mentation pipeline, which can be a desirable quality for many settings including when the
augmentation pipeline is not as well studied as this one. This invariance inherently makes
sense, as during training the denoising autoencoder is learning an expected inverse of the
augmentation pipeline.
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4.3.3 E↵ects of Length of Representation Learning

Figure 10: Top-1 accuracy after 200 epochs of linear evaluation plotted against varying
lengths of representation training for a denoising autoencoder with L2 loss as well as SimCLR.

Another way that we evaluate the strength of the method is to test how quickly the
representation space is learned during training. To do this, we checkpoint the model during
various points in pretraining and test the representation space via the linear evaluation
protocol. If we see high top-1 accuracy early in the representation space, we might say that
the method quickly learns a representation space.

In Figure 10, we see the results of this experiment for the denoising autoencoder with an
L2 embedding loss and the contrastive SimCLR. While we already know that SimCLR
outperforms the denoising autoencoders at the previously tested representation learning
length (300 epochs), it seems that the denoising autoencoder finds a good representation
space quicker than its contrastive counterpart. In fact, the top-1 accuracy when the length
of representation learning is low (50 and 100 epochs) is actually higher for the denoising
autoencoder, which also stabilizes much quicker with respect to length of training. This
method requires a smaller length of representation training to find a good representation
space, a quality which can be desirable in settings where very large models are being used
to create a representation space.

Thus, there are certain conditions where the denoising autoencoder architectures can be
favorable to contrastive methods, while also leaving behind the dependence of negative pair
learning.

21



4.4 Further Work

There are a few experiments that were left o↵ of this work that could be extremely useful
in evaluating this method’s performance and understanding other positive-only alternatives
to contrastive SSL. Although not explored in this paper, we leave these questions open for
exploration in subsequent works.

First, the direct e↵ect of batch size should be compared between the denoising autoen-
coder architectures and SimCLR. Initial experiments were conducted to answer this question,
though the confounding e↵ects of batch size and learning rate made it di�cult to properly
assess this question.

Second, since we now know that faithful reconstructions are not inherently necessary to
generate quality representations, it would be interesting to experiment with the type of loss
calculation utilized for the denoising reconstruction term. Modifying this in conjunction
with the embedding loss might give some intuition as to why certain types of embedding
losses work better with certain kinds of reconstruction losses.

Lastly, although this question is largely explored with a non-denoising reconstruction loss
in [8], it would be interesting to see the e↵ects of using variational denoising training on
the learned representation space. Performing this kind of training in combination with the
augmentation invariance that we see with the denoising reconstruction loss may prove to
create a representation space that can capture the distribution of various data sets.
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5 Conclusions

This work lays out a new framework for using denoising autoencoders to prevent collapse
and generate representations in the context of self-supervised learning. Our method leaves
behind the negative pair computations used in contrastive methods for a positive-only and
simple to implement training scheme. Through tasking the network with reconstructing the
original image before the view was obtained from the augmentation pipeline, we show that
the network learns transformation-invariant representations that require minimal training
to achieve strong downstream performance. Although our method does not outperform the
contrastive SimCLR on the base pipeline, it achieves comparable performance without the
use of negative pairs.

We also show that there are some regimes, including high augmentation and low length
representation training, where the denoising framework outperforms SimCLR by creating
a higher quality representation space. Although there is still a gap between this method
and the contrastive state-of-the-art, the research presented in this work sets a new path
for further experiments and potentially more powerful frameworks based on the concept of
denoising.
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A Appendix

Layer Type Channels/

Nodes In

Channels/

Nodes

Out

Kernel Stride Padding

Encoder

Conv2d 3 32 3x3 1 1

HardTanh

Conv2d 32 32 3x3 1 1

MaxPool2d 2x2

Conv2d 32 64 3x3 1 1

HardTanh

Conv2d 64 64 3x3 1 1

MaxPool2d 2x2

Conv2d 64 512 3x3 1 1

MaxPool2d 2x2

Projector Linear 8192 64

Decoder
(autoen-
coder
only)

Linear 64 8192

HardTanh

ConvT2d 32 32 4x4 2 1

HardTanh

ConvT2d 32 32 4x4 2 1

Sigmoid

Table 3: Full network details. Decoder is only used in experiments where the trained network
is an autoencoder.
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